National Cyber Warfare Foundation (NCWF)

NDSS 2025 – EAGLEYE: Exposing Hidden Web Interfaces In loT Devices Via Routing Analysis


0 user ratings
2025-11-25 18:57:10
milo
Blue Team (CND)

Session4A: IoT Security


Authors, Creators & Presenters: Hangtian Liu (Information Engineering University), Lei Zheng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Shuitao Gan (Laboratory for Advanced Computing and Intelligence Engineering), Chao Zhang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zicong Gao (Information Engineering University), Hongqi Zhang (Henan Key Laboratory of Information Security), Yishun Zeng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zhiyuan Jiang (National University of Defense Technology), Jiahai Yang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University)


PAPER


EAGLEYE: Exposing Hidden Web Interfaces in IoT Devices via Routing Analysis [https://www.ndss-symposium.org/wp-con...](https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbEEzMmJxSkNwUUhDUkMteHZraTQ1blZ5Sk0zUXxBQ3Jtc0tuZldzQXZxQXJaOGt0VDU2RGNPdGVSbnMzcWxiTVZ1UmJsTzcyaUlCTFdvbmhoWnZRdWQ0UlJiUEs4ekR1UXNCNF9KQmp4UGxKOG5kMHdBdHBiaWh6ckxFaGphY0JVRDZDQ21jUWcyREx2Qy1XVTJqWQ&q=https%3A%2F%2Fwww.ndss-symposium.org%2Fwp-content%2Fuploads%2F2025-399-paper.pdf&v=qXDD2iiIeCg) Hidden web interfaces, i.e., undisclosed access channels in IoT devices, introduce great security risks and have resulted in severe attacks in recent years. However, the definition of such threats is vague, and few solutions are able to discover them. Due to their hidden nature, traditional bug detection solutions (e.g., taint analysis, fuzzing) are hard to detect them. In this paper, we present a novel solution EAGLEYE to automatically expose hidden web interfaces in IoT devices. By analyzing input requests to public interfaces, we first identify routing tokens within the requests, i.e., those values (e.g., actions or file names) that are referenced and used as index by the firmware code (routing mechanism) to find associated handler functions. Then, we utilize modern large language models to analyze the contexts of such routing tokens and deduce their common pattern, and then infer other candidate values (e.g., other actions or file names) of these tokens. Lastly, we perform a hidden-interface directed black-box fuzzing, which mutates the routing tokens in input requests with these candidate values as the high-quality dictionary. We have implemented a prototype of EAGLEYE and evaluated it on 13 different commercial IoT devices. EAGLEYE successfully found 79 hidden interfaces, 25X more than the state-of-the-art (SOTA) solution IoTScope. Among them, we further discovered 29 unknown vulnerabilities including backdoor, XSS (cross-site scripting), command injection, and information leakage, and have received 7 CVEs.


ABOUT NDSS

The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.


Permalink


The post NDSS 2025 – EAGLEYE: Exposing Hidden Web Interfaces In loT Devices Via Routing Analysis appeared first on Security Boulevard.



Marc Handelman

Source: Security Boulevard
Source Link: https://securityboulevard.com/2025/11/ndss-2025-eagleye-exposing-hidden-web-interfaces-in-lot-devices-via-routing-analysis/


Comments
new comment
Nobody has commented yet. Will you be the first?
 
Forum
Blue Team (CND)



Copyright 2012 through 2025 - National Cyber Warfare Foundation - All rights reserved worldwide.