National Cyber Warfare Foundation (NCWF)

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks In Split Learning


0 user ratings
2025-12-10 21:28:28
milo
Blue Team (CND)

Session 5C: Federated Learning 1


Authors, Creators & Presenters: Phillip Rieger (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Kavita Kumari (Technical University of Darmstadt), Tigist Abera (Technical University of Darmstadt), Jonathan Knauer (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)


PAPER

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in Split Learning


Split Learning (SL) is a distributed deep learning approach enabling multiple clients and a server to collaboratively train and infer on a shared deep neural network (DNN) without requiring clients to share their private local data. The DNN is partitioned in SL, with most layers residing on the server and a few initial layers and inputs on the client side. This configuration allows resource-constrained clients to participate in training and inference. However, the distributed architecture exposes SL to backdoor attacks, where malicious clients can manipulate local datasets to alter the DNN's behavior. Existing defenses from other distributed frameworks like Federated Learning are not applicable, and there is a lack of effective backdoor defenses specifically designed for SL. We present SafeSplit, the first defense against client-side backdoor attacks in Split Learning (SL). SafeSplit enables the server to detect and filter out malicious client behavior by employing circular backward analysis after a client's training is completed, iteratively reverting to a trained checkpoint where the model under examination is found to be benign. It uses a two-fold analysis to identify client-induced changes and detect poisoned models. First, a static analysis in the frequency domain measures the differences in the layer's parameters at the server. Second, a dynamic analysis introduces a novel rotational distance metric that assesses the orientation shifts of the server's layer parameters during training. Our comprehensive evaluation across various data distributions, client counts, and attack scenarios demonstrates the high efficacy of this dual analysis in mitigating backdoor attacks while preserving model utility.




ABOUT NDSS

The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.




Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.


Permalink


The post SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks In Split Learning appeared first on Security Boulevard.



Marc Handelman

Source: Security Boulevard
Source Link: https://securityboulevard.com/2025/12/safesplit-a-novel-defense-against-client-side-backdoor-attacks-in-split-learning/


Comments
new comment
Nobody has commented yet. Will you be the first?
 
Forum
Blue Team (CND)



Copyright 2012 through 2026 - National Cyber Warfare Foundation - All rights reserved worldwide.