National Cyber Warfare Foundation (NCWF)

NDSS 2025 – The Skeleton Keys: A Large Scale Analysis Of Credential Leakage In Mini-Apps


0 user ratings
2025-11-19 16:55:28
milo
Blue Team (CND)

-----------


SESSION

Session 3C: Mobile Security


-----------


-----------


Authors, Creators & Presenters: Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)


PAPER

The Skeleton Keys: A Large Scale Analysis of Credential Leakage in Mini-apps

In recent years, the app-in-app paradigm, involving super-app and mini-app, has been becoming increasingly popular in the mobile ecosystem. Super-app platforms offer mini-app servers access to a suite of powerful and sensitive services, including payment processing and mini-app analytics. This access empowers mini-app servers to enhance their offerings with robust and practical functionalities and better serve their mini-apps. To safeguard these essential services, a credential-based authentication system has been implemented, facilitating secure access between super-app platforms and mini-app servers. However, the design and workflow of the crucial credential mechanism still remain unclear. More importantly, its security has not been comprehensively understood or explored to date. In this paper, we conduct the first systematic study of the credential system in the app-in-app paradigm and draw the security landscape of credential leakage risks. Consequently, our study shows that 21 popular super-app platforms delegate sensitive services to mini-app servers with seven types of credentials. Unfortunately, these credentials may suffer from leakage threats caused by malicious mini-app users, posing serious security threats to both super-app platforms and mini-app servers. Then, we design and implement a novel credential security verification tool, called KeyMagnet, that can effectively assess the security implications of credential leakage. To tackle unstructured and dynamically retrieved credentials in the app-in-app paradigm, KeyMagnet extracts and understands the semantics of credential-use in mini-apps and verifies their security. Last, by applying KeyMagnet on 413,775 real-world mini-apps of 6 super-app platforms, 84,491 credential leaks are detected, spanning over 54,728 mini-apps. We confirm credential leakage can cause serious security hazards, such as hijacking the accounts of all mini-app users and stealing users' sensitive data. In response, we have engaged in responsible vulnerability disclosure with the corresponding developers and are actively helping them resolve these issues. At the time of writing, 89 reported issues have been assigned with CVE IDs.


-----------


ABOUT NDSS

The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


-----------


Our thanks to the **[Network and Distributed System Security (NDSS) Symposium][1]** for publishing their Creators, Authors and Presenter’s superb **[NDSS Symposium 2025 Conference][2]** content on the **[organization’s’][1]** **[YouTube][3]** channel.


The post NDSS 2025 – The Skeleton Keys: A Large Scale Analysis Of Credential Leakage In Mini-Apps appeared first on Security Boulevard.



Marc Handelman

Source: Security Boulevard
Source Link: https://securityboulevard.com/2025/11/ndss-2025-the-skeleton-keys-a-large-scale-analysis-of-credential-leakage-in-mini-apps/


Comments
new comment
Nobody has commented yet. Will you be the first?
 
Forum
Blue Team (CND)



Copyright 2012 through 2025 - National Cyber Warfare Foundation - All rights reserved worldwide.